Comparison of Earthquake Resistant Structure Using ETABS Software and Manual Calculation

Kiran R.Patil ${ }^{1}$, Aboli S. Jeurkar ${ }^{2}$, Prachi B. Ugale ${ }^{3}$, Shivprasad B.Tadlapure ${ }^{4}$ Manoj U. Deosarkar ${ }^{5}$
${ }^{1234}$ UG Students, Dept. of Civil Engineering Dr. D. Y. Patil School of Engineering and Technology, Pune, Maharashtra 412105
${ }^{5}$ Assistant Professor, Dept. of Civil Engineering Dr. D. Y. Patil School of Engineering and Technology, Pune, Maharashtra 412105 Corresponding Author: Kiran R.Patil

Date of Submission: 02-09-2020

Abstract

In the present day E-tabs software used for analysis and design of building especially reinforced cement concrete building. The project explain both the calculation and comparison between manual calculation and E-tabs software. Analysis is done with the help of equivalent static analysis methods per IS 13920:2016 and IS 1893(Part1):2016 guidelines. Total load of building and base shear calculated manual as well as E-tabs software.

Keywords: Analysis, E-tabs software, Load, Displacement.

I. INTRODUCTION

Earthquake causes shaking of the ground so because of this any structure on ground will experience certain movement at base. Slab connected to beam and beams connected to column so they also get affected by shaking which is cause due to earthquake. Seismic analysis is a part of structural analysis and it is the calculation of how a structure will respond during shaking ground. This create lateral load on building at its bottom and structure starts shaking and therefore it is required to consider various forces for analysis. Equivalent static analysis method is used for analysis and design for both the calculation. Therefore, it is necessary to evaluate these forces in order to design the structure capable of resisting these loads.

- Methods for analysis

1) Equivalent static analysis
2) Response spectrum analysis
3) Non-linear dynamic analysis
4) Non-linear static analysis
5) Time history method
6) Seismic coefficient method
7) Pushover analysis method

II. PROBLEM STATEMENT

Example: Seismic Analysis \& Design of a G+9 Multi-Story Building.
Problem Statement: A G+9 multi-story RC building for an institutional building has plan dimensions the building is located in seismic zone III on a site with hard rock. Design the building for seismic loads as per IS: 1893 (Part 1): 2016.

Column Beam Plan of Building
Assumed preliminary data required for analysis frame

Types of atructure	Muhh-itoof riga josist trane (perial RC monere resuting fiame)
Seimicic zeer	ZOSE III (able 3, 151893 (gart 1) 2016)
Namber ef maty	Ten (0 + ${ }^{\text {c }}$)
Floer heiju	5.5m
Infil wall	250 mm thick
Trupees had	2 KNM
Materiab	Conarele M25 Beisfisemant Ft 415
Sive of colume	Firrto thind fioor $\quad 350 \times 600 \mathrm{~mm}$ Fourtite sion fioes $\quad 350 \times 500 \mathrm{~mm}$ Severnt te tmil foor $250 \times 400 \mathrm{~mm}$
Sise of leas	
Deput of slah	100 mm thick
Sperific meyte ofllcc	25 KNMS
Spetific weiple of infill	$20 \mathrm{KN3O}$
Type of mil	Recky mall

Step 1: calculation of lumped masses to various floor level of the earthquake forces shall be calculated for the full dead load plus the percentage of imposed load as given in given in table 8 of IS 1893 Part: 2016
The imposed load on roof is assumed to be zero
The lumped masses of each floor are worked as follows

- First to third floor

1) Mass of infill

$$
\begin{aligned}
& =(((0.25 \times 180 \times 3.5)+(0.25 \times 150 \times 3.5)) 25) \\
& =5775 \mathrm{KN}
\end{aligned}
$$

2) Self-weight of slab
$=180 \times 150 \times 25 \times 0.10$
$=67500 \mathrm{KN}$
3) Self weight of column
$=42(0.45 \times 0.6) \times 3.5 \times 25$
$=992.25 \mathrm{KN}$
4) Self weight of beam

Horizontal $=38(0.4 \times 0.6) \times 5 \times 25=1140$
Vertical $=20(0.4 \times 0.6) \times 6 \times 25=720$
$10(0.4 \times 0.6) \times 3 \times 25=180$
5) Imposed load of floor
$=(180 \times 150 \times 2 \times 0.5)$
$=13500 \mathrm{KN}$
Total load of floor $=5775+67500+992.5+2040$ $+13500$
Total load $=89807.25 \mathrm{KN}$

- Fourth floor to sixth floor

1) Mass of infill
$=(((0.25 \times 180 \times 3.5)+(0.25 \times 150 \times 3.5)) 25)$
$=5775 \mathrm{KN}$
2) Self-weight of slab
$=180 \times 150 \times 25 \times 0.10$
$=67500 \mathrm{KN}$
3) Self weight of column

$$
\begin{aligned}
& =42(0.35 \times 0.5) \times 3.5 \times 25 \\
& =643.125 \mathrm{KN}
\end{aligned}
$$

4) Self weight of beam

Horizontal $=38(0.3 \times 0.45) \times 5 \times 25=641.25$
Vertical $=20(0.3 \times 0.45) \times 6 \times 25=405$

$$
10(0.3 \times 0.45) \times 3 \times 25=101.25
$$

5) Imposed load of floor

$$
=(180 \times 150 \times 2 \times 0.5)
$$

$$
=13500 \mathrm{KN}
$$

Total load of floor $=5775+67500+367.5+684.24$
$+13500$

$$
\text { Total load }=87826.74 \mathrm{KN}
$$

- Seventh to tenth floor

1) Mass of infill

$$
\begin{aligned}
& =(((0.25 \times 180 \times 3.5)+(0.25 \times 150 \times 3.5)) 25) \\
& =5775 \mathrm{KN}
\end{aligned}
$$

2) Self-weight of slab

$$
=180 \times 150 \times 25 \times 0.10
$$

$$
=67500 \mathrm{KN}
$$

3) Self weight of column
$=42(0.25 \times 0.4) \times 3.5 \times 25$
$=367.5 \mathrm{KN}$
4) Self weight of beam

Horizontal $=38(0.23 \times 0.35) \times 5 \times 25=382.37$
Vertical $=20(0.23 \times 0.35) \times 6 \times 25=241.5$

$$
10(0.23 \times 0.35) \times 3 \times 25=60.37
$$

5) Imposed load of floor

$$
\begin{aligned}
& =(180 \times 150 \times 2 \times 0.5) \\
& =13500 \mathrm{KN}
\end{aligned}
$$

Total load of floor $=5775+67500+367.5+684.24$
$+13500$
Total load $=87826.74 \mathrm{KN}$

- Calculation of Roof

1) Mass of infill

$$
=(((0.25 \times 180 \times 3.5 / 2)+(0.25 \times 150 \times 3.5 / 2)) 25)
$$

$=2887.5 \mathrm{KN}$
2) Self-weight of slab
$=180 \times 150 \times 25 \times 0.10$
$=67500 \mathrm{KN}$
3) Self weight of column
$=42(0.25 \times 0.4) \times 3.5 / 2 \times 25$
$=183.75 \mathrm{KN}$
4) Self weight of beam

Horizontal $=38(0.23 \times 0.35) \times 5 \times 25=382.37$
Vertical $=20(0.23 \times 0.35) \times 6 \times 25=241.5$

$$
10(0.23 \times 0.35) \times 3 \times 25=60.37
$$

5) Imposed load of floor
$=$ Zero Total load of floor $=2887.5+67500+$
183.75+684.24

Total load $=71255.49 \mathrm{KN}$

- Seismic weight of building

Seismic weight of all floors
$=89810$ X $3+88566$ X $3+87827$ X $3+71256$
$=$ Final load $=869865 \mathrm{KN}$

NOTE: the seismic weight of each floor is its full dead load plus appropriate amount of imposed load.
As specified in clause 7.3.1 and 7.3.2 IS 1893 (Part) 2016

Any weight supposed in between stories shall be distributed to the floor above and below in inverse proportion to its distance from the floors

Step 2:Determination of fundamental natural period

The approximate fundamental natural period of a vibration (Ta) in seconds of a moment resisting frame building without brick infill panels may be estimated by empirical expression.

International Journal of Advances in Engineering and Management (IJAEM)
$\mathrm{Ta}=0.075 \mathrm{X} \mathrm{h}^{\wedge}{ }^{\wedge} .75$ \qquad .(Cl 7.6.2)
$=0.075 \mathrm{X} 35{ }^{\wedge} 0.75$
$\mathrm{Ta}=1.079 \mathrm{sec}$
Step 3: Determination of design of base floor
Design of seismic base shear
$\mathrm{Vb}=\mathrm{Ah} \mathrm{x} \mathrm{W}$
$\mathrm{Z}=$ zone factor $=0.16$ \qquad . (Table no 3)
$\mathrm{R}=$ Response reduction factor $=5$
.. (Table no 9)
$\mathrm{I}=$ Importance factor $=1.5$. \qquad . (Table no 8)
$\mathrm{Sa} / \mathrm{g}=$ for rocky hard soil $=0.926$. $($ From fig no 2 A$)$
$\mathrm{Ah}=\mathrm{Z} / 2 \mathrm{XI} / \mathrm{R} \mathrm{X} \mathrm{Sa} / \mathrm{g} \ldots \ldots$. (Formula from cl 6.4.2)
$\mathrm{Ah}=0.022$
Design of seismic base shear
$\mathrm{Vb}=\mathrm{Ah} \times \mathrm{W}$

$$
=0.022 \times 869865
$$

$\mathrm{Vb}=19137.03 \mathrm{KN}$
Total load $=88565.62 \mathrm{KN}$
Step 4: Lateral distribution of various floors

\$urey krel	W1(K)	教(KN)		$\begin{gathered} (\text { Wia) })^{2} \Sigma \text { Whait } \\ 2 \end{gathered}$	$\begin{gathered} Q=\sqrt{6} x \\ (W a i)^{2} 2\left[w_{3}\right)^{2} / 2 \end{gathered}$
10	7126	35	$812880.6 \times 10^{\circ 3}$	0.00388	18735
9	17821	31.5	$87146.14 \times 10^{\circ} 3$	$0.003 \% 6$	18598
$\$$	87827	18	64ES6.36 \10'3	3.00078	14543
\dagger	17827	34.5	5271815×109	000062	112.64
6	18868	21	3065760 $10{ }^{\text {3 }}$	60004	52.86
5	18565	173	$27128.33 \times 10^{\circ 3}$	0.00651	38.19
4	78865	14	$1315893 \times 10^{\circ} 3$	000015	28.16
3	15810	W5	8001.55 X 103	400011	26.55
2	19810	1	40862 2153	800005	978
1	15810	35	1108.17×1.53	0.00012	2 S

III.E-TABS ANALYSIS RESULTS

3-D View of the Model in E-Tabs

Seismic Load Calculation

Lateral Load at Stories

IV. CONCLUSION

1) Value of design base shear by manual calculation is 19271.03 KN and in E-tabs software
is 18271.89 KN . Hence value obtained using E-tabs software is less than value obtained by manual calculations.
2) Analysis was done by using ETABS Software and manually as per IS 1893(part1):2016. The lateral load to stories obtained in both the cases are approximately same.
3) There is a gradual increase in the value of lateral forces from bottom floor to top floor in software analysis
4) Seismic weight of structure is approximately same in both cases.

REFERANCES

[1]. Mohammed Omair. 2018 "Analysis And Design of Residential Building $\mathrm{C}+\mathrm{G}+7$ using ETabs" www.ijitech.org ISSN 23218665 Volume.06, Issue. 01
[2]. Akash Kumar. 2019 "Design Of Earthquake Resistant Structure Of Multi-Story Rcc Building" www.irjet.net e-ISSN: 2395-0056 Volume: 06 Issue: 06
[3]. K. Sathishkumar 2015 "Study of Earthquake Resistant RCC Buildings with Increased Strength and Stability" (An ISO 3297: 2007 Certified Organization)
[4]. ISSN (Online): $2319-8753$, Vol. 4, Issue 6.
[5]. 5) Ishita Arora. 2017 " To Study The Earthquake Resistant Design Of Structure" www.irjet.net e-ISSN: 2395-0056, Volume: 04 Issue: 07
[6]. IS: 1893-2002 (part-1) "criteria for earthquake resistant design of structures" fifth revision, Bureau of Indian Standards, New Delhi.
[7]. IS: 456-2000 (Indian Standard Plain Reinforced Concrete Code of Practice) Fourth Revision.
[8]. 8IS: 875-1987 (part-1) for Dead Loads, code of practice of Design loads (other than earthquake) for buildings and structures.
[9]. IS: 875-1987 (part-2) for Live Loads or Imposed Loads, code of practice of Design loads (other than earthquake) for buildings and structures.
[10]. IS: 875-1987 (part-3) for Wind Loads, code of practice of Design loads (other than earthquake) for buildings and structures.
[11]. IS 13920-1993 for Ductile Detailing Reinforced Concrete Structures subject to seismic forces, Bureau of Indian Standards, New Delhi.
[12]. Bureau of Indian standard: IS 875 (Part 1) 1987, Design Dead Loads for Buildings and Structures.
[13]. Bureau of Indian standard: IS 875 (Part 2) -

